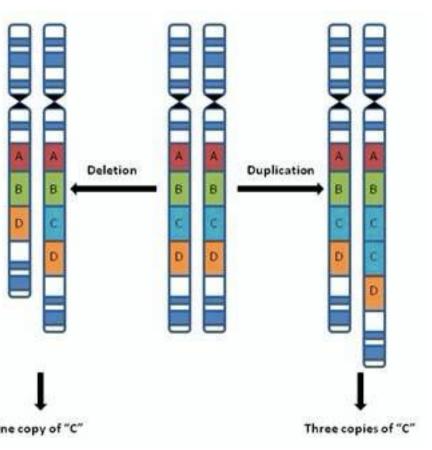
Copy Number Variation and Divergence in Color and Morphology in a Threespine Stickleback Stream-Anadromous Pair

Grant Tiger, Bhakti Vahewala (presenting), Lucas Cortés and Jeffrey S. McKinnon^{1,} Dept. Biology, East Carolina U., Greenville, NC, USA ¹mckinnonj@ecu.edu

Background

- The threespine stickleback is a teleost that has undergone recurrent adaptive radiations from marine to freshwater environments.
- The Little Campbell stream-anadromous pair is an example of recently diverged, but closely related, morphs. One way in which they are divergent is in their red throat coloration. Females in the stream population often have characteristic red throats, whereas anadromous females lack this trait.

Figure 1: Threespine stickleback from Little Campbell Stream population. Note characteristic red throat. (Credit: Christopher Anderson)


Central Aims of Study:

- 1) Identify and quantify the CNV differences between the two study populations (anadromous/stream)
- 2) Identify and quantify the CNV differences between red and dull stickleback females
- 3) Identify and quantify CNV in specific color genes previously identified in a stickleback gene expression study (Newsome *et al*. unpublished)

- Diploid organisms typically carry two copies of each gene. However, differences in the number of copies of chromosomal segments exist in the form of Copy Number Variation (CNV) which has arisen as a key feature of evolutionary diversification.

change in copy number of chromosomal segments. The chromosomal segment C appears on each chromosome in a normal copy number, it only appears once in a heterozygous deletion (left) and appears three times in a heterozygous duplication (right) (Neurowiki, 2013).

Figure 3: Little Campbell Stream, British Columbia, Canada (source: google.com/earth)

Methods

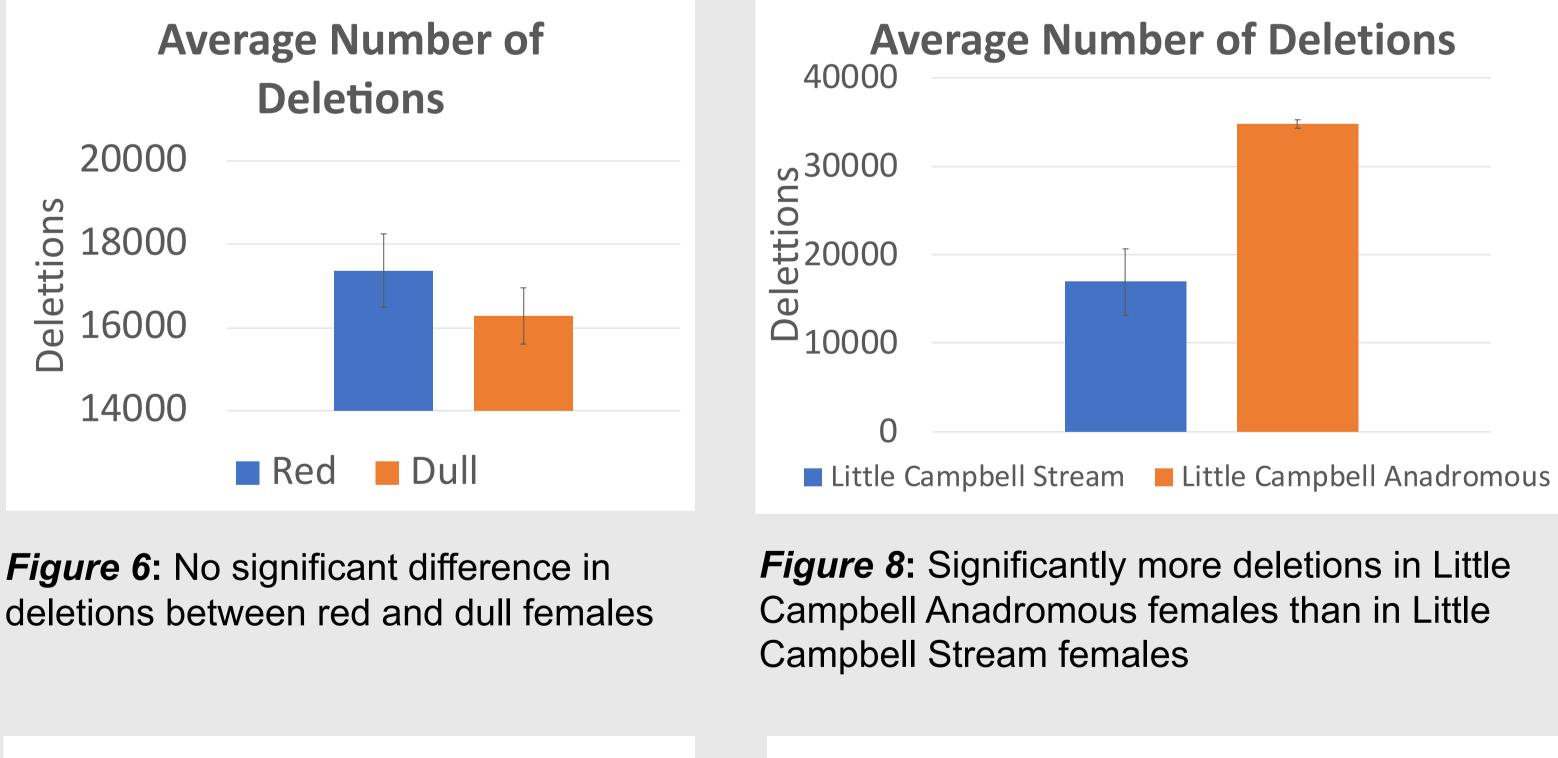
- Collected fish, Little Campbell Stream (LCS) and Little Campbell Anadromous (LCA), from British Columbia
- Extracted DNA from fin clips
- Sequenced DNA using Illumina paired-end sequencing (30x depth), aligned reads to the reference stickleback genome
- GATK CNVcaller was used to identify deletions and duplications in relation to the reference genome
- Statistically verified CNV differences between populations and color morphs. Identified CNVs in 18 specific genes, previously identified in Newsome et al. unpublished by scanning VCF files

K	e
	/////programs/getk-4.1.2.0/getk-package-4.1.2.0-local.jar AnnotateIntervals
	R revisedAssemblyUmmasked.fa
	<pre>preprocessed_intervals.interval_list</pre>
	Interval-merging-rule OVERLAPPING_ONLY
	<pre>o annotated_intervals.tsv</pre>
	<pre>//programs/gatk-4.1.2.0/gatk-package-4.1.2.0-local.jar FilterIntervals</pre>
	Interval-monging-nule OVERLAPPING_ONLY
	<pre>0 filtered_intervals.isterval_list</pre>
	//programs/gatk-4.1.210/gatk-package-4.112.0-local.jar CollectReadCounts
	1 5278-52_52_trimmedaligned_unique_fixed.bam.sorted1.bam
	<pre>filtered_intervals.interval_list</pre>
	Interval-merging-rule OVERLAPPING ONLY
	-0 5278-52_52.counts.hdf5
	for 1 in ".sorted.bas;
	do code-'echo \$(1) cut -d'_' -f1,2';
	//prognams/gatk-4.1.2.8/gatk-package-4.1.2.0-locul.jar CollectReadCounts
	-1 \$(1)
	-L filtered_intervals.interval_list
	interval-morging-rule OVERLAPPING_ONLY
	-0 \$code.counts.hdf5; done

Figure 4: Code for separating BAM files into
intervals which are later used for CNV calling

150

100


50

slo45a2

CHROM	POS	ID REF ALT	QUAL	FILTER INFO	FORMAT	5270-532 532		
hrI	1	CNV_chrI_1_1000 N	,	<dup> .</dup>		END=1000	GT:CN:CNLP:CNQ 0:2:30	9,62,0
hrI	1001	CNV_chrI_1001_2000	N	,<dup></dup>	1. AC	. END=200	Ø GT:CN:CNLP:CNQ	0:2:
hrI	2001	CNV_chrl_2001_3000	N	,<dup></dup>		. END=300	Ø GT:CN:CNLP:CNQ	0:2:
hrI	3001	CNV_chrI_3001_4000	N	,<dup></dup>	18	. END=408	Ø GT:CN:CNLP:CNQ	0:2:
hrI	4001	CNV_chrI_4001_5000	N	, <dup></dup>		. END=500	Ø GT:CN:CNLP:CNQ	0:2:
hrI	5001	CNV_chrI_5001_6000	N	, <dup></dup>	8	. END=600	Ø GT:CN:CNLP:CNQ	0:2:
hrI	6001	CNV_chrI_6001_7000	N	,<dup></dup>	÷.	. END=700	Ø GT:CN:CNLP:CNQ	0:2:
hrI	7001	CNV_chrI_7001_8000	N	,<dup></dup>		. END=800	Ø GT:CN:CNLP:CNQ	0:2:
hrI	8001	CNV_chrI_8001_9000	Ň	,<dup></dup>	- <u>3</u>	. END=900	Ø GT:CN:CNLP:CNQ	0:2:
hrI	9001	CNV_chrI_9001_10000	N	,<dup></dup>	1. AC	. END=100	00 GT:CN:CNLP:CNQ	0:2:
hrI	10001	CNV_chrI_10001_11000	N	, <dup></dup>	1	. END=110	00 GT:CN:CNLP:CNQ	0:2:
hrI	11001	CNV_chrI_11001_12000	N	,<dup></dup>	1.	. END=120	00 GT:CN:CNLP:CNQ	0:2:
hrI	12001	CNV_chrI_12001_13000	N	,<dup></dup>	÷.	. END=130	00 GT:CN:CNLP:CNQ	0:2:
hrI	13001	CNV_chrI_13001_14000	N	,<dup></dup>		. END=140	00 GT:CN:CNLP:CNQ	0:2:
hrI	17001	CNV_chrI_17001_18000	N	,<dup></dup>	1	. END=180	00 GT:CN:CNLP:CNQ	0:2:
hrI	18001	CNV_chrI_18001_19000	N	,<dup></dup>		. END=196	00 GT:CN:CNLP:CNQ	0:2:
hrI	19001	CNV_chrI_19001_20000	N	,<dup></dup>	- <u>2</u>	. END=200	00 GT:CN:CNLP:CNQ	0:2:
hrI:	20001	CNV_chrI_20001_21000	N	,<dup></dup>	- a)	. END=210	00 GT:CN:CNLP:CNQ	0:2:
hrI	21001	CNV_chrI_21001_22000	N	, <dup></dup>	8	. END=220	00 GT:CN:CNLP:CNQ	0:2:
hrI	22001	CNV_chrI_22001_23000	N	,<dup></dup>		. END=230	00 GT:CN:CNLP:CNQ	0:2:
hrI	23001	CNV_chrI_23001_24000	N	,<dup></dup>	÷.	. END=240	00 GT:CN:CNLP:CNQ	0:2:
hrI	24001	CNV_chrI_24001_25000	N	,<dup></dup>		. END=250	00 GT:CN:CNLP:CNQ	0:2:

Figure 5: VCF file containing the intervals in the genome that have a CNV within them (credit: Grant Tiger)

Results, Interpretation

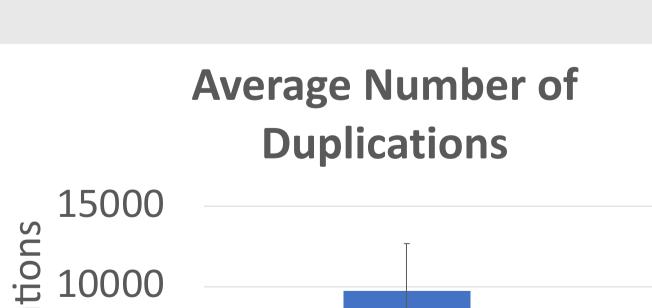
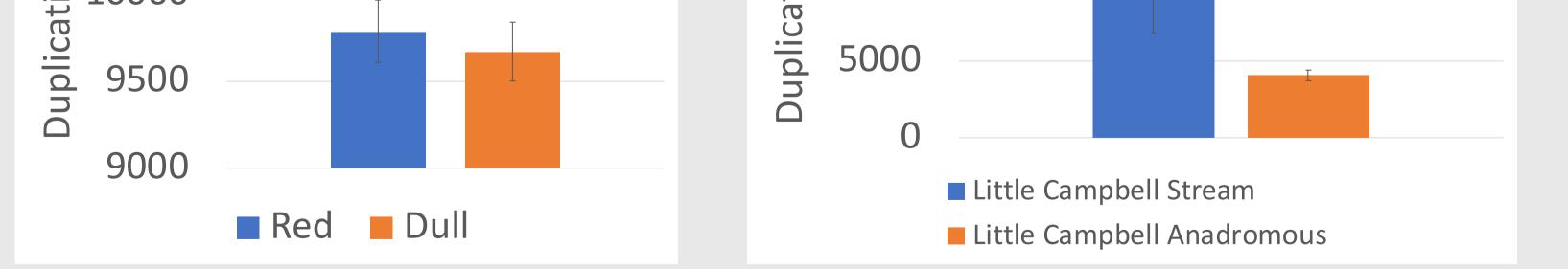


Figure 10: Expression patterns of LCS and LCA populations (D=dull, C=colored, F=female, M=male)

Pop / Sex / Color


Table 1: Deletions in gene *slc45a2* are restricted to only anadromous individuals

EN30AC00000010257				
Name	Sample Number	Position	Copy Number State	Number of Copies
LCAF1	90	3523001	1	0
LCAF2	91	3523001	1	0
LCAF3	92	3523001	1	0
LCAF4	93	3523001	1	0
LCAF5	94	3523001	1	0
AFT2	36	3523001	1	0
AFT4	37	3523001	1	0
		3524001	1	0
AFT5	38	3523001	1	0

Conclusions

ENSGACG00000016297

- Stream individuals show lower levels of deletions indicating that they can act as reservoirs for ancient alleles selected out of marine populations (Lowe *et al.*, 2018)
- Freshwater (stream) individuals generally have more gene copies than anadromous, possibly providing new gene functions for freshwater invasion (Hirase *et al.*, 2014)
- There were no CNV differences found between the red and dull females
- We found very few CNVs within genes. This

Figure 7: No significant difference in duplications between red and dull females

Figure 9: Significantly more duplications in Little Campbell Steam females than in Little Campbell Anadromous females

Future Direction

- Hope to search more thoroughly for CNVs in intronic regions near genes of interest
- Will include more study populations to enhance and assess generality
- Use additional calling programs and molecular technique to validate calls

References: Hirase, S., Ozaki, H. and Iwasaki, W. (2014). Parallel selection on gene copy number variations through evolution of three-spined stickleback genomes. BMC Genomics, 15(1), p.735. Lowe, C.B., Sanchez-Luege, N., Howes, T.R., Brady, S.D., Daugherty, R.R., Jones, F.C., Bell, M.A. and Kingsley, D.M. (2018). Corrigendum: Detecting differential copy number variation between groups of samples. Genome Research, 28(5), pp.766.1-766.1. Neurowiki2013.wikidot.com. 2013. Copy Number Variations - Neurowiki 2013. [online] Available at: http://neurowiki2013.wikidot.com/individual:copy-number-variations [Accessed 1 April 2020]

is expected as it is thought that around 95% of CNVs are in noncoding regions (Lowe *et al.*, 2018)

Gene *slc45a2*, which is responsible for melanocyte differentiation in zebrafish, was the only gene to contain CNVs (deletions) in the coding region, compared to the reference genome. The CNVs were exclusively found in the anadromous population which suggests that the deletions could be responsible for the lack of female color in this population.

Acknowledgements: NIH

